A High Specific Output Gasoline Low-Temperature Combustion Engine – 2019 US DOE VTO AMR meeting –

Hanho Yun

Principal Investigator
Propulsion Systems Research Labs
General Motors
June 13, 2019

Acknowledgment: This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under Award Number DE-EE0007788.

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project ID # ace121

Overview

Timeline

Start Date: January 2017 End Date: December 2019

Duration: 3 years

Completion: 75%

Goals / Barriers

- 15 ~ 17% fuel economy over baseline
- Low temperature combustion regimes for gasoline engines
- Effective engine controls for Low **Temperature Combustion**
- Emissions control challenges for advanced engine concepts

Budget

Total funding for 3 years

\$ 1.90 M DOE Share

\$ 2.04 M GM Share

\$ 3.94 M Total

Funding received in FY18: \$456.580

Funding for FY19: \$ 529,350

Project Partners

Key Suppliers

FEV Delphi Federal Moguls

Relevance – Objective

The primary objective of this project is the <u>development of a gasoline combustion</u> engine system capable of demonstrating a 15-17% fuel economy improvement relative to a contemporary stoichiometric combustion engine using marketplace gasoline(RD587)

- Be consistent with relevant emissions constraints (SULEV30)
- Advanced individual technology should be synergistically integrated to achieve this goal

Approach – Combustion and Control

Development TARGET: <u>High Efficiency</u>; <u>Low NOx</u>; <u>Low Combustion Noise</u>; <u>Controllability</u>

- Maximize LTC operation to cover the FTP cycle,
- Develop optimal LTC strategy at various operating conditions, (optimization of valving strategy, injection and ignition strategy)
- Develop ignition timing control methodology at different combustion mode

Approach – Ignition & Aftertreatment

- Challenge: the higher in-cylinder pressures demands higher breakdown voltages → require smaller gap sizes → the more the stability limit is degraded.
- GM in conjunction with Federal Mogul has developed a unique GBDI (Groundless Barrier Discharge Igniter).
- The system provides superior flame-initiation under stoich conditions, as well as LTC combustion phasing control through ozone generation by simply changing the supplying voltages.

-30 -20 -10 0

10

Crank Angle [dATDC]

PASS is a low cost, lean aftertreatment system that relies on the characteristics of the TWC and SCR to address stoichiometric and lean exhaust gas aftertreatment <u>without the need for supplemental urea injection and/or high PGM loadings</u>. → Periodically operate the engine rich to generate NH3 on the TWC and store it on the SCR → Under lean conditions, use the stored NH3 on the SCR for NOx conversion.

Approach – Milestones

	2017			2018				2019				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Engine build and installation												
Develop homogeneous stoich calibration and control			1		,							
FTP cycle test				1								
LTC engine build and installation					1	1						
LTC cal and ctrl at steady state								1				
Implementation of aftertreatment system												
Hot FTP test				4	1				1			
Cold FTP test				Gol	No-go)		Gol	No-go)		
GENERAL MOTORS				Dec	ision				ision	_		

Baseline Engine

- 2.2L 4-cylinder Engine
- Compression ratio = 12:1
- BOSCH 60-8 hole injector
- Conventional spark plug
- Single-step camshaft

LTC Engine

- Scaled 1.4L 4-cylinder turbocharged engine
- DELPHI 60/90-10 hole injector
- GBDI System (SPK is back-up)
- Two-step camshaft
- Turbo-charger

Evaluation of GBDI System

- LTC_NVO Operation
- AF = 23:1
- NO EGR, single injection, single ignition

- Stoich. Operation
- EGR sweep at stoich. operation
- Single injection, Single ignition

- LTC_PVO Operation
- PVO=100, 8% EGR
- Double Injection (SOI1=300 bTDC, SOI2=60 bTDC)

- Stoich. Operation
- 2000 rpm, 26mg
- 10% EGR
- Single Injection (SOI=290 bTDC)

Drawbacks of GBDI

 2000rpm, AF ratio sweep (LTC Operation)

- 1500 rpm, 11 mg (2 bar BMEP)
- EGR sweep at stoich. operation
- Single injection, Single ignition

Since May 2018, 12 igniters have failed so far.

Date	Hour	Comment
5/16/2018	0	Failed on start up (70V, 1.5ms);
		internal arcing detected on bench test.
5/17/2018	0	Coil Failure
5/29/2018		Failed after battery issue;
		Upper swivel nut broke loose from silicone rubber
6/1/2018		Coil Failure
6/4/2018		Firing only on one side, significant deposit
		formation
6/5/2018		Firing only on one side, no deposit formation
6/7/2018	30	Broke sheathing, carbon tracking
6/22/2018	40	Coil Failure
7/26/2018	40	Coil Failure
8/3/2018	147	Lost plasma
8/9/2018	12	Igniter Failure
8/8/2018	8	Igniter Failure

- MAP = 95 kPa (WOT); w/o or w/ EGR
- Low lift camshaft (negative valve overlap) for hot internal residuals
- Low emissions and High efficiency □ ignition timing control and noise

Noise Reduction

- 2000 rpm, 3.3 bar BMEP
- AF = 18
- CA50 = 7 deg aTDC
- EGR suppresses auto-ignitability of the mixture → combustion begins with flame-burn and autoignition takes place later in the cycle → the total burn duration is extended → ringing decreases

Noise Reduction

- 2000 rpm, 4 bar BMEP
- CA50 = 9.5 aTDC
- 10% EGR

→ The more mass for 2nd injection, the lower ringing and NOx emissions due to the extended burn duration

G E N € Combustion Strategy I (reactivity controlled)→

Torque (Nm)

- MAP = 95 kPa (WOT); NO EGR
- Low lift camshaft (negative valve overlap) for hot internal residuals
- Combustion stability → Reforming for additional heat; flame burn for combustion robustness

Robustness

- 1500 rpm, 6 mg
- NO EGR

Quad injection strategy

- Significant stability improvement with slight increase in NOx emissions
- More precise control of the amount of reforming & flame

Any proposed future work is subject to change based on funding levels

WOT MAP = 95 kPa; w/ EGR

Torque (Nm)

- High lift camshaft (Positive Valve Overlap) for internal residuals
- High efficiency, low noise and robust → NOx emissions

Improve NOx-COV Trade-off

- 2000 rpm, 4.5 bar BMEP
- PVO operation
- 10% EGR
- Combustion phasing is a key parameter to obtain the best trade-off between NOx emissions and combustion stability

CA50 (deg aTDC)

Any proposed future work is subject to change based on funding levels

12

10

NSFC (g/kW-hr)

EINOx (g/kg)

An air charge control strategy for NVO and PVO mode is developed based on APC model and the partial air pressure in the intake manifold, which is estimated using a feedback from measured mass airflow (MAF).

Simulation result with the air charge control strategy is applied when the LTC engine is operated in NVO mode.

24

Collaboration and Coordination

- <u>FEV</u> GT-POWER modeling support for WOT studies to reduce baseline calibration efforts and hardware risk
- **<u>DELPHI</u>** Fuel injector supplier due to the better performance of closely-spaced multiple injection.
- Federal Mogul Worked together for the development of GBDI
- BASF Worked together for the development of aftertreatment system

Proposed Future Work and Challenges

- Refine low temperature combustion, control, and aftertreatment for smooth transient operation
- Develop a noise control strategy when EGR mismatches during transient operation
- Develop mode-switching strategy to prevent misfire or partial burn during mode change
- Demonstrate robust operation over hot FTP fuel economy benefits and emissions results consistent with objectives
- Demonstrate robust operation over cold FTP fuel economy benefits and emissions results consistent with objectives

Summary

Low Temperature Combustion Engine

- Complete the development of homogeneous stoichiometric SI calibration and controls
- Successfully demonstrate FTP cycle test (both UDDS and HWFET) for homogeneous stoichiometric SI operation
- Develop the methodology of combustion phasing control for various modes of low temperature combustion
- Extend the lean low temperature combustion regime using multiple injection, EGR and valving strategy
- Complete extensive evaluation of GBDI system
- Complete the development of LTC calibrations and control

Thank You!!!